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1 Introduction

The name “STNTUPLE” stands for 2 related things: a micro-DST CDF data format
and a set of utilities to read the data stored in this format. Originally STNTUPLE was
designed to be just an extended ntuple format, it still remains such. Format of ROOT
files, however, allows to minimize the difference between the ntuple and micro-DST, this
is how STNTUPLE became a micro-DST.

2 Getting Started

In this section includes several examples illustrating how to start using STNTUPLE for
analysis quickly.

2.1 STNTUPLE executables

Stntuple package builds several executables.

• stnmaker.exe is a light-weight executable, which runs on the output of Pro-
ductionExe (cdfSim, cdfGen) and produces output in STNTUPLE format. stn-
maker.exe doesn’t recalculate parameters of the input objects and is stable in time.
Use this executable if for the generator-level studies. To build stnmaker.exe do

make Stntuple.stnmaker

stnmaker.exe is being built and validated nightly.

• stnmaker prod.exe - this purpose of this executable is to generate STNTUPLE’s
with most up-to-date information. It runs on the output of ProductionExe, re-
makes high-level objects and stores the information in STNTUPLE files. stn-
maker prod.exe also runs the folowing analysis modules, which are not part
of Production: CosmicFinderModule, JetProbModule, TrackRefitterMod-
ule, SecVtxModule, TopEventModule

Module contents of stnmaker prod.exe may change significantly from one release
to another. To build this executable against CDF offline release 4.9.1:

setup cdfsoft2 4.9.1

newrel -t 4.9.1 dev_239

cd dev_239

addpkg Stntuple dev_239

chmod 755 Stntuple/scripts/build_stntuple

Stntuple/scripts/build_stntuple

gmake Stntuple._prod

The latest instructions on how to build the current version of stnmaker prod.exe
can be found at STNTUPLE home page

• stnmakerFat.exe - specialized executable for B-tag studies. Aaron knows more
about its contents.

1
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3 Storing collections

3.1 Naming

• Each collection of CDF objects can be identified by 2 strings: its description and
name of the creating process - see AC++ docs for more details. To reflect
this mnemonics, in StntupleMaker talk-to’s CDF collection names are defined as
“process name@description”, where the process name and the description are
separated by the column, for example, PROD@COT Global Tracking.

• “@” is used instead of “:” to allow working with the corresponding branches in split
mode

• it is possible to omit process name and refer to the collection by its description only,
for example, COT Global Tracking. In this case default process name is assumed.
The default process name can be redefined in the talk-to to StntupleMaker, for
example:

talk StntupleMaker

processName set L3

exit

3.2 The Defaults

CDF data model allows to store several collections of the same type in the event record, for
example, collections of jets reconstructed by different algorithms. Same holds for tracks.
By default StntupleMaker stores only one collection of each type in the STNTUPLE. The
defaults are

• the default process name is PROD

• defTracks collection coresponding to the default process is always stored in the
‘TrackBlock data block.

• JetCluModule-cone0.4 collection corresponding to the default process is stored
in the data block with the name JetBlock

3.3 Storing more than one collection

It is possible to store more than one collection of tracks or jets in STNTUPLE. The rules
are as follows.

• tracks:

– the following talk-to

talk StntupleMaker

trackCollName set PROD@COT_Global_Tracking_SL COT_Global_Tracking_HL

exit

2
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adds COT Global Tracking SL collection created by the process PROD
and COT Global Tracking HL collection created by default process to the
list of stored track collections. If default process name is PROD the collections
will be stored in the data blocks named PROD@COT Global Tracking SL
and PROD@COT Global Tracking HL correspondingly

• rules for the jets are slightly different. When several jet collections are specified in
the talk-to, the first one is stored on the branch with predefined name - JetBlock,
the rest collections are stored on the branches with the names defined by the names
of the collections. For example,

– the following talk-to

talk StntupleMaker

jetCollName set JetCluModule-cone0.7 PROD@JetCluModule-cone0.4

exit

instructs StntupleMaker to store jet collection JetCluModule-cone0.7 in the
data block with the name JetBlock and collection JetCluModule-cone0.7
created by the process PROD in the data block named PROD@JetCluModule-
cone0.4.

Therefore the difference between the tracks and the jets is that for the tracks the
contents of the default track block (TrackBlock) is predefined, while for the jets there
is no such a limitation. The reason is that defTracks track collection is used by the
electron, muon and tau reconstruction algorithms, so storing it in the STNTUPLE on a
branch with predefined name simplifies the analysis code.

3
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4 STNTUPLE and DB Constants

Some run-dependent constants (luminosities, beam positions etc) are usually needed even
at the latest stages of the analysis. Such constants are stored (once per run) in the
STNTUPLE files and retrieved as necessary. The constants can be accesses via STNTU-
PLE database manager (class TStnDBManager). All the STNTUPLE “DB tables” are
named and accessed by name. Tables stored in the STNTUPLE along with the their
respective names are listed below.

• trigger tables, table name “TriggerTable”, class TStnTriggerTable

• COT beam positions, table name “CotBeamPos”, class TStnBeamPosition.

• SVX beam positions, table name “SvxBeamPos”, class TStnBeamPosition.

• run summary constants, table name “RunSummary”, class TStnRunSummary.

The following simple example illustrates how to access the DB constants stored in
STNTUPLE.

//_____________________________________________________________________________

int TTrigAnaModule::BeginRun() {

// talk to DB manager and retrieve the

// trigger table for this run

TStnDBManager* dbm = TStnDBManager::Instance();

TStnTriggerTable* tt = (TStnTriggerTable*) dbm->GetTable("TriggerTable");

....

// get COT beam position at Z=0

TStnBeamPos* bp = (TStnBeamPos*) dbm->GetTable(‘‘CotBeamPos’’);

Double_t x0 = bp->X0();

Double_t y0 = bp->Y0();

}

4
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5 Advanced topics

5.1 Luminosity information

• Instantaneous luminosity for an event is stored in the header block (see TStnHeaderBlock).
It is accessible from within any analysis module as follows:

float inst_lum = GetHeaderBlock()->InstLum()

luminosity is stored in units of cm2 · sec−1, so the numbers are of the order of 1030

• When stntupling job runs, TStnDBManager updates the luminosity info once per
begin run record, however, db record is saved into the ntuple file only once. If events
from the same run end up in 2 different files, each of the files has a db subdirectory
for this run with the luminosity information.

STNTUPLE analysis job creates a list of processed runs which it updates as the
execution progresses. This list doesn’t have duplicates and each run appears in this
list only once. As such this procedure doesn’t involve any double counting and the
only assumption made is that for each run we are processing all its run sections
(which is almost always true modulo bad/lost files). The right way is to integrate
luminosity in the stntupling job by counting each processed run section separately
- this is not implemented yet, volunteers welcome and I can even show how to do
it. There are also 3 histograms created by default by the analysis job - they contain
delivered luminosity, online luminosity and offline luminosity for the runs which
have at least one event stored in STNTUPLE (this is to be fixed)

5
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5.2 Track extrapolation to CES and CMU

STNTUPLE has simple utilities for track extrapolation. To use them one needs to build
(standalone) library libStntuple geom.so and load it into the ROOT session:

make Stntuple._geom

root

root [0] .L ./shlib/\$BFARCH/libStntuple_geom.so

• Classes compiled into this library are defined in Stntuple/geom subpackage

• TSimpleExtrapolator class has methods to extrapolate track up to CES and CMU.
Example of its use is shown below:

//-----------------------------------------------------------------------------

// calculate parameters of the SEED track at CES and do it once per tau

//-----------------------------------------------------------------------------

TSimpleExtrapolator* fExtrapolator = new TSimpleExtrapolator();

TTrajectoryPoint p0;

TStnTrk* trk = ...; // defined elsewhere

TLorentzVector* tmom;

double xyz[8], xw, zw, ptot;

int trk_charge, side, wedge;

xyz[0] = -trk->D0()*sin(trk->Phi0());

xyz[1] = trk->D0()*cos(trk->Phi0());

xyz[2] = trk->Z0();

tmom = trk->Momentum();

ptot = tmom->P();

xyz[3] = tmom->Px()/ptot;

xyz[4] = tmom->Py()/ptot;

xyz[5] = tmom->Pz()/ptot;

xyz[6] = 0;

xyz[7] = ptot;

p0.SetPoint(xyz);

trk_charge = trk->Charge();

fExtrapolator->SwimToCes(&p0,trk_charge,side,wedge,xw,zw);

// track coordinates at CES

float track_x_ces = xw;

float track_z_ces = zw;

-------------------------------

6
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5.3 Remote Data Access

To access the STNTUPLE’s stored on different platform over the network one can use
ROOTD daemon. For the CDF (read-only) installation of ROOTD one can do it as
follows:

root[0] TStnAna x(‘‘root://fcdfsgi2.fnal.gov//cdf/data05/my_file.stn’’);

Use TFile::Open to open network files interactively from the ROOT prompt.

7
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5.4 Copying and filtering

• TStnAna job can do filtering and write output STNTUPLE with the events of
interest. Output mode is turned off be default. To turn output on one needs to
define an output module, as shown in the example below.

• Every TStnModule can be used as a filter.

TStnAna* x;

int test_output() {

x = new TStnAna("input.stntuple");

m_l3t = new TTauL3TriggerModule;

x->AddModule(m_l3t);

m_l3t->SetFilteringMode(1); // 0: disabled (default), 1: filter, 2: veto

// use TStnModule::SetPassed(Int_t Passed) inside the module

// to

TStnOutputModule* m = new TStnOutputModule("output.root");

x->SetOutputModule(m);

x->Run(100);

}

• Primary STNTUPLE (created by the AC++ job) contains DB records, including
the luminosity information, for all the runs seen by InitStntupleModule. Secondary
STNTUPLE’s will contain DB information only for those runs, for which it at least
one event has been written into the ntuple.

8
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6 Identification of the High-Level Objects

Classes TStnTauID, TStnElectronID etc provide utilities for identification of the high-
level physics objects. We consider typical use case of these classes taking TStnTauID
class as an example:

TStnTauID* fTauID = new TStnTauID();

int ntau = fTauBlock->NTaus();

for (int i=0; i<ntau; i++) {

TStnTau* tau = fTauBlock->Tau(i);

int id_word = fTauID->IDWord(tau);

if (id_word == 0) {

// the tau passed all the ID cuts

..........

}

}

TStnTauID::IDWord checks the tau identification cuts for a given tau candidate
and returned integer - id word - is a bit-packed mask defining passed and failed cuts.
Each ID cut implemented in TStnTauID has a bit number assigned to it. When a cut
fails, the bit corresponding to it is set to 1. id word=0 means that tau object passed
all the selection cuts, the next example shows how to check whether a given tau object
passed given ID cut:

TStnTauID* id = fTauID;

...

int id_word = fTauID->IDWord(tau);

if ((id_word & ~ id->kCalIsoBit) == 0) {

// tau candidate passed calorimetry

// isolation cut

.............

}

9
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7 TStnTauID

TStnTauID class provides set of tau identification utilities. Two most important methods
of the class are TStnTauID::IDWord and TStnTauID::LooseIDWord, which implement
“tight” and “loose” definitions of tau leptons.

7.1 Bits and ID cuts

Assignment of the bits is described in TStnTauID.hh include file.

kDetEtaBit = 0x1 << 0,
kEtBit = 0x1 << 1,
kSeedTowerEtBit = 0x1 << 2,
kSeedTrackPtBit = 0x1 << 3,
kEmfrBit = 0x1 << 4,
kNTrk1030Bit = 0x1 << 5,
kNPi01030Bit = 0x1 << 6,
kCalIsoBit = 0x1 << 7,
kCalIso1Bit = 0x1 << 8,
kTrkIsoBit = 0x1 << 9,
kNAxSegBit = 0x1 << 11,
kNStSegBit = 0x1 << 12,
kSeedTrackD0Bit = 0x1 << 13,
kSeedTrackZ0Bit = 0x1 << 14,
kSeedTrackDzBit = 0x1 << 15,
kZCesBit = 0x1 << 16,
kCalMassBit = 0x1 << 17,
kTrkMassBit = 0x1 << 18,
kVisMassBit = 0x1 << 19,
kNMuStubsBit = 0x1 << 20, // this shouldn’t really be used
kTightElectronBit = 0x1 << 21,
kTrkAngleBit = 0x1 << 22,
kPi0AngleBit = 0x1 << 23

10
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7.2 Int t TStnTauID::IDWord(TStnTau* Tau)

Implements the following ID cuts:

• | ηdetector |< ηmax (default = 1.0)

• Et > Et min (default = 20.0)

• Et seed tower > Et min (default = 10.0)

• Pt seed track > Pt min (default = 4.5)

• electron rejection cut. Depending of the value of TStnTauID::fSelectElectrons this
cut can be reversed.

– TStnTauID::fSelectElectrons = 0 selects electron rejection mode:

EMfraction(τ) < 1 − ξ/(E/p)

– TStnTauID::fSelectElectrons = 1 inverts the cut to select electrons:

EMfraction(τ) > 1 − ξ/(E/p)

• Ntracks(10 − 30) < Nmax (default : Nmax = 1)

7.3 Int t TStnTauID::LooseIDWord(TStnTau* Tau)

“Loose” tau identification cuts are a subset of the “tight” set of cuts:

• | ηdetector |< ηmax (default = 1.0)

• Et > Et min (default = 20.0)

• Et seed tower > Et min (default = 10.0)

• Pt seed track > Pt min (default = 4.5)

• electron rejection cut. Depending of the value of TStnTauID::fSelectElectrons this
cut can be reversed.

– TStnTauID::fSelectElectrons = 0 selects electron rejection mode:

EMfraction(τ) < 1 − ξ/(E/p)

– TStnTauID::fSelectElectrons = 1 inverts the cut to select electrons:

EMfraction(τ) > 1 − ξ/(E/p)

11
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8 STNTUPLE Datasets

In this section we consider structure and cataloging of the STNTUPLE static datasets
and describe the cataloging procedure. Static STNTUPLE datasets can be distributed
over the network and span over multiple static fileservers. Their structure is very similar
to the structure of the datasets described in the CDF Data File Catalog. STNTUPLE
data catalog, however, is implemented as a text database, maintenance of which doesn’t
require any specialized tools.

8.1 Format of the STNTUPLE Dataset Catalog

STNTUPLE data catalog is located in the directory pointed to by the STNTUPLE CATALOG
environment variable. The following example defines STNTUPLE data catalog to be lo-
cated in the $HOME/catalog subdirectory (we assume bash shell is being used):

export STNTUPLE_CATALOG=\$HOME/catalog

Datasets can de versioned. For example, one can think of creating STNTUPLE’s
using bf stnmaker prod.exe version dev 239 and comparing them to the datasets created
with the previous version of stnmaker prod.exe (version dev 238). STNTUPLE catalog
therefore may have multiple partitions, and we use the same notation as CDF DFC -
book - for those. A book is a subdirectory in the STNTUPLE catalog directory, name
of the book is the relative name of the subdirectory.

For example, STNTUPLE data catalog described by the following directory structure

/data12/murat/tgeant/junk:
used 8 available 1628008
drwxr-xr-x 2 murat cdf 4096 Apr 23 21:52 .
drwxr-xr-x 26 murat cdf 4096 Apr 23 21:52 ..
drwxr-xr-x 2 murat cdf 4096 Apr 23 21:52 murat
drwxr-xr-x 2 murat cdf 4096 Apr 23 21:52 stntuple

/data12/murat/tgeant/junk/murat:
used 16 available 1627984
drwxr-xr-x 4 murat cdf 4096 Apr 23 21:52 .
drwxr-xr-x 4 murat cdf 4096 Apr 23 21:53 ..
drwxr-xr-x 2 murat cdf 4096 Apr 23 21:52 test1
drwxr-xr-x 2 murat cdf 4096 Apr 23 21:52 test2

/data12/murat/tgeant/junk/stntuple:
used 16 available 1627984
drwxr-xr-x 4 murat cdf 4096 Apr 23 21:53 .
drwxr-xr-x 4 murat cdf 4096 Apr 23 21:53 ..
drwxr-xr-x 2 murat cdf 4096 Apr 23 21:53 dev_238
drwxr-xr-x 2 murat cdf 4096 Apr 23 21:53 dev_239

has 4 books: stntuple/dev 238, stntuple/dev 239, murat/test1 and murat/test2
defined. The book names should not contain “:” character in it.

12
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A book may have several datasets described in it, there is no limitations on the syntax
of the dataset names except the one above. All the names above should be valid UNIX
directory names. A full dataset name is specified by the book and by the dataset ID
separated by “:”, for example:stntuple/dev 239:btop0g or murat/test1:zee new.

A dataset consists of several filesets, a fileset is a set of files located on the same file-
server in the same directory. Different filesets of the same dataset can reside on different
fileservers. There is no limitations on the fileset name or number of files in one fileset,
other than discussed above. Dataset catalog resides in the directory, which name is defined
by the names of the book and the dataset, for example, catalog of the dataset stntu-
ple/dev 239:btop0g is located in $STNTUPLE CATALOG/stntuple/dev 239/btop0g.

8.2 Catalog Files

Dataset catalog consists of several ASCII files residing in the same directory. If dataset
has N filesets in it, the dataset catalog consists onf N+1 ASCII files:

• dataset catalog: one file per dataset. It contains fileset-level description of the
dataset, its name is fixed by the dataset ID. Fileset-level catalog of dataset ID
btop0g is stored in the file named .btop08.catalog . The following example ex-
plains format of the dataset catalog file:

#-----------------------------------------------------------------------

# fcdfdata051: /cdf/scratch/cdfdata/scratch/btop0g

# fileset server name subdirectory

#-----------------------------------------------------------------------

GI0741 fcdfdata051.fnal.gov /cdf/scratch/cdfdata/scratch/btop0g

GI0744 fcdfdata051.fnal.gov /cdf/scratch/cdfdata/scratch/btop0g

GI0747 fcdfdata051.fnal.gov /cdf/scratch/cdfdata/scratch/btop0g

GI0749 fcdfdata051.fnal.gov /cdf/scratch/cdfdata/scratch/btop0g

GI0750 fcdfdata051.fnal.gov /cdf/scratch/cdfdata/scratch/btop0g

GI0776 fcdfdata051.fnal.gov /cdf/scratch/cdfdata/scratch/btop0g

GI0943 fcdfdata051.fnal.gov /cdf/scratch/cdfdata/scratch/btop0g

GI0945 fcdfdata051.fnal.gov /cdf/scratch/cdfdata/scratch/btop0g

GI0949 fcdfdata051.fnal.gov /cdf/scratch/cdfdata/scratch/btop0g

GI1239 fcdfdata051.fnal.gov /cdf/scratch/cdfdata/scratch/btop0g

GI1241 fcdfdata051.fnal.gov /cdf/scratch/cdfdata/scratch/btop0g

GI1275 fcdfdata051.fnal.gov /cdf/scratch/cdfdata/scratch/btop0g

#-----------------------------------------------------------------------

# end of the fileset-level catalog

#-----------------------------------------------------------------------

The dataset catalog has 1 line per fileset, the first column defines the name of the
fileset, the 2nd column defined the name of the remote server (may be the name
of the local host) and the last column defines the name of the directory where the
fileset is located. Lines starting from “#” are the comment lines.

• Catalogs of individual filesets - 1 file per fileset. The name of the file shoudl be the
same as the name of the fileset. Fileset catalog includes one non-comment line per
file and its format is illustrated by the example below:

13
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#-----------------------------------------------------------------------

# GI0741.*

#-----------------------------------------------------------------------

GI0741.0 btop0g.0016.GI0741.0.s.0001 1212517997

GI0741.1 btop0g.0017.GI0741.1.s.0001 1382061686

GI0741.2 btop0g.0018.GI0741.2.s.0001 1170985582

GI0741.3 btop0g.0019.GI0741.3.s.0001 1180158114

GI0741.4 btop0g.0020.GI0741.4.s.0001 1127961129

GI0741.5 btop0g.0021.GI0741.5.s.0001 1074892152

#-----------------------------------------------------------------------

# end

#-----------------------------------------------------------------------

The 1-st column is a string which includes the fileset name, the 2-nd column is the
file name, the 3rd column is the file size (not used for the moment).

8.3 Using cataloged datasets

The following example explains use of the cataloged dataset.

----------------------------------------------- tau_ana.C

TStnAna* x = NULL;

TChain* chain = NULL;

TStnCatalog* catalog = NULL;

void tau_ana(const char* Dataset, Int_t NEvents = 0) {

if (! chain) {

chain = new TChain("STNTUPLE");

catalog = new TStnCatalog();

catalog->InitChain(chain,Dataset);

//

// example: TStnCatalog::InitChain(chain,"stntuple/dev_239:gqcd1g")

x = new TStnAna(chain);

}

...

x->Run(NEvents);

}

-------------------------------------------- end of tau_ana.C

....

The analysis driver script tau ana.C can be called from the ROOT prompt as follows:

• to process the whole dataset:

root [0] .x tau_ana.C(‘‘stntuple/dev_239:btop0g’’);

14
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• to process a single fileset:

root [0] .x tau_ana.C(‘‘stntuple/dev_239:btop0g:GI0741.0’’);

• to process a single file:

root [0] .x tau_ana.C(‘‘stntuple/dev_239:btop0g:GI0741.0:btop0g.0016.GI0741.0.s.0001’’);

• to process first 100 events from the fileset:

root [0] .x tau_ana.C(‘‘stntuple/dev_239:btop0g:GI0741.0’’,100);

15
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9 Using Good Run Lists - quick instructions

• by default all runs are good

• use TStnAna::SetGoodRunList(”ETF”) to specify ETF good run list

• use TStnAna::SetGoodRunRoutine to specify your own definition of a good run.
Parameter in TStnAna::SetGoodRunRoutine call is a function, returning 1 for good
runs and 0 for bad ones. Example:

int function my_good_run(int RunNumber) {

if (RunNumber < 154799) return 1;

else return 0;

}

TStnAna x;

x->SetGoodRunRoutine(my_good_run);

• here is a brief example of TStnGoodRunList usage:

TStnGoodRunList grl;

TStnRunSummary* rs;

grl.Init();

int run_number = 138425;

rs = grl.GetRunSummary(run_number);

float lumi = rs->OfflineLumiRS();

// you can also do

rs->Print();

• technical note: TStnGoodRunList::GetRunSummary returns a pointer to an inter-
nally cached structure, so run summary information is available for only one run at
a time

9.1 More about TStnGoodRunList

TStnGoodRunList grl;

TStnRunSummary* rs;

grl.Init();

16
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10 MC objects in STNTUPLE

MC information can be represented at 2 different levels - output of the MC event gen-
erators and output of the detector simulation. Correspondingly, STNTUPLE includes 2
different MC blocks:

• TGenpBlock, which contains generator-level information

• TObspBlock, containing data corresponding to the output fo detector simulation

10.1 TGenpBlock

10.2 TObspBlock

10.3 Looping over GENP particles

• The following example shows how to loop over the particles stored in GENP block

for (int i=0; i<fGenpBlock->NParticles(); i++) {

TGenParticle* p = fGenpBlock->Particle(i);

int im = p->GetFirstMother();

if (im >= 0) {

TGenParticle* mom = fGenpBlock->Particle(im);

if (mom!=0) {

int mom_id = mom->GetPdgCode();

// do something with it

....

}

}

}

Note, that for incoming particles the following line

int im = p->GetFirstMother();

sets im to -1, which means that these particles do not have a mother. Therefore it
is necessary to check that im is not equal to -1.
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11 STNTUPLE Validation tools

This section describes STNTUPLE validation tools. Two most typical validation tasks
are

• code validation: a data file has been processed with some old “reference” version
of the offline code. The same data file has been reprocessed with the newer version
of the reconstruction code. How is it possible to find and quantify the differences
between 2 different versions of the offline code?

• data validation: 2 different data files corresponding to the runs taken under
different conditions have been processed with the same version of the reconstruction
code. How it is possible to find and quantify the differences between the data?

Steps:

• run 2 STNTUPLE jobs on 2 files in question and for each job save resulting his-
tograms into the coresponding histogram file using TStnAna::SaveHist. Suppose
the names of the 2 files are old.root and new.root correspondingly.

• build validation library libStntuple val.so:

make Stntuple._val

• start interactive ROOT session, load libStntuple val.so, then do:

root[0] .L shlib/$BFARCH/libStntuple_val.so

root[1] compare_stn_hist("old.root","new.root",min_prob)

where min prob is the probability of KS test below which 2 histograms will be
considered different. In the end compare stn hist pops up a TBrowser window and
displays histograms with comparison of which has KS probability below min prob

• go to the ”root” folder (double click on it with the left button) using left mouse
button

• double click on STNTUPLE RESULTS. Icons with the red dot mark modules
for which 2 files have different histograms continue clicking with the left button,
until you get the histogram names displayed.

• click on a histogram with the right button, you get context menu

• click on ”DrawEP”, see histograms from the 2 files overlayed on top of each other.
In the shell window where you started ROOT, you’ll get number of entries and the
probability of KS test printed.
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12 STNTUPLE Data Blocks

This section contains description of STNTUPLE data structures (blocks)
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12.1 TStnElectronBlock

TStnElectronBlock stores information about the reconstructed electron candidates.
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12.2 TStnMuonBlock

TStnMuonBlock stores information about the reconstructed muon candidates.
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12.3 TStnMetBlock

TStnMetBlock stores variables related to the calculation of the missing Et. As there are
different ways to calculate met, TStnMetBlock includes several values of MET, calculated
under different assumptions.

• TStnMetBlock::Met(0): MET calculated at Z=0

• TStnMetBlock::Met(1): MET calculated at best VXPRIM vertex (best vertex in
“VertexCollection”. If an event contains a high-Pt lepton (electron, muon or tau-
candidate), Met is calculated at Z0 of the lepton’s track

• TStnMetBlock::Met(2): MET calculated at Z event with

• TStnMetBlock::Met(3): MET calculated at best Beate’s vertex

• TStnMetBlock::MetPhi(i): Phi angle of the 2-D vector of 6ET, corresponding to i-th
way of calculating 6ET.

• TStnMetBlock::MetX(i): X-component of the 2-D vector of 6ET, corresponding to
i-th way of calculating 6ET.

• TStnMetBlock::MetY(i): Y-component of the 2-D vector of 6ET, corresponding to
i-th way of calculating 6ET.

• TStnMetBlock::Sumet(0): Sum Et over all the calorimeter towers (currently at Z=0)

• TStnMetBlock::Sumet(1): Sum Et calculated at Z of the first vertex in VertexBlock
or at Z0 of the high-Pt lepton

• TStnMetBlock::Sumet(2): Sum Et calculated at Z of the highest-Pt vertex in ZVer-
texBlock

• TStnMetBlock::MetSig(): significance of MET (so far calculated at Z=0)
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12.4 TObspBlock

TObspBlock (OBSP - name, which roots are in CDF Run I history) stores post-simulation
information: MC particles and vertices produced by the detector simulation code. For
the same historical reasons TObspBlock stores FORTRAN-type indices (starting from 1).

Example 1: finding MC vertex, coresponding to track Trk, reconstructed in MC
event

//_____________________________________________________________________________

int find_mc_vertex(TStnTrack* Trk) {

// note iv-1 in the vertex index calculation

int iobsp = Trk->ObspNumber();

TObspParticle* p;

TObsvVertex* v = NULL;

if (iobsp >= 0) {

p = fObspBlock->Particle(iobsp);

iv = p->VertexNumber();

v = fObspBlock->Vertex(iv-1);

}

return v;

}
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12.5 TStnTauBlock

TStnTauBlock stores information about the reconstructed tau lepton candidates.
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12.6 TStnTrackBlock

TStnTrackBlock stores tracking information.
Matching between the tracks and the MC particles is done based on hit parentage using

output of TrackObspMatch module - CdfTrackMatch object is used. If TrackObspModule
has not been run upstream, matching is not done. Note, that TrackObspModule requires
track hits to be present in the event record, so it either has to be run in Production, or
Produciton tcl files should be modified to save COT hits - by default they are not saved.
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13 Silicon Blocks

There are several different branches with information related to the silicon detector and
tracks with silicon hits on them. As in other STNTUPLE branches, the data is organized as
an object which inherits from TObject and which contains as data members a TClone-
sArray of objects which describe the fundamental unit of interest, such as a silicon cluster,
and possible links (see section on TStnLinkBlock) to other branches.

The following sections describe the ntuple blocks that contain information on the po-
sition of all the wafers, strips, clusters, intersections of tracks with wafers, intersections of
OBSP particles with wafers, and links between the tracks and silicon hits and intersections.
These branches contain enough information to do cluster-level studies, intrinsic resolution
studies, and track based studies. Examples of these can be found in the Stntuple/ana

subdirectory: TSiPed, TRPhiWt, and TSiExample.
First, the fundamental objects used in the TClonesArray are described, and then how

they fit into the larger block which is stored in a single branch.

13.1 TStnSiDigiCode

This class is used to give every readout unit of the silicon detector a unique identifier. It is
based on the CDF class TrackingObjects/SiData/SiDigiCode. It is used in most of the
higher level silicon data blocks in STNTUPLE to distinguish data coming from individual
half-ladders.

• Data members

– UShort t fDigiCode: Unique code for each readout unit (also called a half-
ladder). This number is fairly compact, and ranges from 0 for L00, barrel 0,
phi wedge 0, to 9135 for ISL layer 7, barrel 2, phi wedge 35. Since it is fairly
compact, it can be used directly as an index for arrays.

• Member functions

– UInt t Barrel(): The barrel of this half-ladder. Ranges from 0-2.

– UInt t LadderSeg(): The ladder segment. Ranges from 0-2 for L00, and 0-1
for SVX and ISL.

– UInt t PhiWedge(): Phi wedge. Ranges from 0-12 for L00 and SVX, 0-24 for
ISL central barrel 1, 0-28 for ISL forward/backward barrels layer 6, and 0-35
for ISL layer 7.

– UInt t Layer(): Layer number. 0 for L00, 1-5 for SVX, 6-7 for ISL.

– UInt t Side(): Axial or stereo side of readout unit. 0 for axial, 1 for 90◦ or
shallow stereo.

– Setters: There are also setter functions for all the above quantites.

13.2 TSiAlign

This is a simple container TVector3’s which represents the center and normal vector of
each silicon ladder segment (see Section 13.1) and each wafer in the half ladder.
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The input files come from running TrackingUserMods/test/siGeometryValidation.cc with
the option ”outputFile” to save an ascii file of the geometry after alignment. Two example
ascii files are in the CVS repository1.

You can create this object either from an ascii file using the constructor that takes a
filename as input, or you can stream it in and out directly since it inherits from TObject.

This object defines a simple nested class, TSiHalfLadder, which contains the vectors
for each wafer.

• Nested class TSiHalfLadder

– TVector3 h: Global coordinate (cm) of center of each half ladder

– TVector3 nh: Normal vector of center of each half ladder

– int n: Number of wafers in this half ladder. L00 and SVX half ladders each
have two wafers of silicon, whereas ISL half ladders have three.

– TVector3 w[3]: Global position of center of each wafer in the half ladder.

– TVector3 nw[3]: Normal vector of center of each wafer in the half ladder.

• Data members

– TMap fMap: A map of TSiHalfLadder’s used as a simple lookup table for the
wafer positions.

• Member functions

– TVector3* GetCenter(TStnSiDigiCode*) and GetNormal(TStnSiDigiCode*):
Return the global coordinates and normal vector of the center of the half ladder
for a given digicode.

– int GetNWafer(TStnSiDigiCode*): The number of wafers in this half ladder

– TVector3* GetWaferCenter(TStnSiDigiCode *digi, int iw) and GetWaferNormal(TStnSiDigiCode

*digi, int iw): Return the center and normal vector of a given wafer for this
half ladder.

13.3 TStnSiStrip

This class contains all the relevant information about an individual strip in the silicon
detector. It is used in the ntuple branch TSiStripBlock (see Section 13.4).

Information about the strip is packed into integers and chars to save space, but is puffed
up into human readable form by the streamer. Because of this feature, a TStnSiStrip

must never be split (use split mode -1) since ROOT’s default streamer will not unpack
the information. What is described below are the human readable data members which
are not persistent.

• Data members

– Int t fStrip: The strip number. The range of this variable depends on which
layer and side it comes from, but the maximum allowed range is 0-895.

1See Stntuple/db/si/siGeo 100030 1 GOOD.txt for the ascii file that represents the silicon alignment
used for the winter conferences of 2003.
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– Float t fADC: The pedestal subtracted charge in units of ADC counts. The
range of allowed charges is -15 to 240.75 in 1/4 ADC count units.

– Float t fNoise: The RMS of the pedestal (saved from the offline database)
in ADC counts.

– Float t fDNoise: The RMS of the difference between pedestals of neighboring
strips.

– Int t fStatus: 1=good strip, 0=bad strip according to offline database.

– Int t fOBSP[3]: The index into the TObspBlock (see Section ??) of up to
three GEANT particles which contributed to the charge on this strip.

– UShort t fDigiCode: The integer used as a datamember for the TStnSiDigiCode
of the half ladder that this strip lives in (see Section 13.1).

– Optional data members

∗ bool fStreamGeometryInfo: If this variable has been set true while mak-
ing the TSiStripBlock (see Section 13.4), then the following information
is streamed out for each strip. This is useful for debugging purposes and
to easily make plots of the positions of individual strips before clustering.

∗ TVector3 fGlobal: Global coordinates of this strip.

∗ Float t fLocal: Local coordinates. The dead-center of the half ladder is
the origin of this coordinate system.

13.4 TSiStripBlock

This is a collection of all silicon strips in the event. The TStnSiStrip’s (see Sec-
tion 13.3) are stored in the flat TClonesArray in blocks of the same digicode (half
ladder). If you want fast access to all strips in a given half ladder, you should call
TSiStripBlock::InitEvent() to initialize the lookup tables. Then you can use fIndexFirstHit[]
and fIndexLastHit[] to loop over all the strips on a half ladder.

In addition to the strips in the TClonesArray, the backend state and time since
the previous L1 accept for each half ladder is also stored. There is also the option to
turn on the streaming of the detailed geometry information of every strip (global and
local coordinates). This makes the ntuple quite large, but can be useful for debugging
and making plots. To turn this feature on, use the following talk-to in StntupleMaker:
makeSiStrips set 2.

When filling this block, be sure that the StorableRun2SiStripSet is puffed
in the PuffModule, or that you are rerunning clustering yourself. Otherwise, there will
be no strips in the event record and this branch in your ntuple will be empty.

• Data members

– Int t fNSiStrips: Number of TStnSiStrip’s in the block.

– TClonesArray* fSiStripList: Array of all strips.

– Int t *fIndexFirstHit: Array used as a lookup table for the index into the
TClonesArray for the first strip on this ladder. If this half ladder has no strips,
then the index is -1.
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– Int t *fIndexLastHit: Like previous array, but gives the index of the last
hit on the half ladder. If this half ladder has no strips, then the index is -2.

– Int t fNDigiCodes: Number of half ladders with strips.

– Short t *fBEState: Backend state of this half ladder.

– Short t *fDtL1A: Time since previous L1 accept for this half ladder.

– The other data members are streamed out, but are not generally accessed by
the user. Instead they get puffed up into the lookup tables above by a call to
InitEvent().

• Member functions

– Int t InitEvent(): Puffs up lookup tables for this event. If you aren’t going
to use the lookup tables, don’t call this and it will save you some time.

– TStnSiStrip* SiStrip(int i): Access to the strip in fSiStripList with
index i.

– Int t FindStrip(int digi, int stripnum): Returns the index of the strip
in fSiStripList with a given digicode and strip number. This is used primar-
ily when filling the ntuple.

13.5 TStnSiHit

This class contains all the relavent information about a silicon cluster (also called a hit).
It is a pared down version of the CDF class TrackingObjects/SiData/SiHit. For a
link to the TStnSiStrip’s that make up this hit, see the link block in TSvxDataBlock in
Section 13.6.

• Data members

– TVector3 fGlobal: Position of the hit in global coordinates. Since these are
two-dimensional hits, the third coordinate is taken from the center of the half-
ladder. In the case of hits that were used in a track, the global position is
corrected for wafer level alignments based on the 3D track intersection with
the wafer and the third dimension is taken from this intersection point.

– Float t fStripNum: Position of hit on half ladder in units of strip number.

– Float t fLocal: Same as previous local coordinate, but in units of centime-
ters. The origin is the center of the half ladder.

– Float t fQtotal: Total (pedestal subtracted) charge of cluster in ADC counts.

– Float t fNoise: The sum in quadriture of the noise of the strips making up
the cluster.

– Char t fStatus: Bit field. Bit 0=has bad strips, bit 1=neighbors are bad.
Use the member functions to test if this is a good strip.

– TStnSiDigiCode fDigiCode: Digicode of the ladder that this hit lives on.

– Int t fUniqueID: Reuse this data member of TObject to store information on
which Monte Carlo particles contributed to the charge of the hit. Use member
functions to get at this.
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• Member functions

– Int t NObsp(): Number of Monte Carlo particles that produced this hit.

– Int t Obsp(int i): Index into the TObspBlock (see Section ??) of the i-th
particle contributing to this hit.

– Bool t Good(): This is a good hit.

– Bool t HasBadNeighbor(): This cluster contains a strip that is next to a bad
strip and should be considered suspect.

13.6 TSvxDataBlock

This branch contains an array of all the silicon hits (TStnSiHit’s, see Section 13.5) in
the event. It also has a link block to access all the strips in the TSiStripBlock (see
Section 13.4) that contribute to a given hit. There are optional lookup tables which are
puffed with a call to TSvxDataBlock::InitEvent() which enable the user to have easy
access to all hits in a given half ladder (digicode).

There are also links from the hits to tracks, but this information is stored in a different
block (see TStnTrackLinkBlock in Section 13.11).

• Data members

– Int t fNSiHits: Total number of TStnSiHit’s in this event.

– TClonesArray* fSiHitList: Array of hits stored in blocks of the same digi-
code.

– Int t* fIndexFirstHit: Lookup table of index of first hit in a given digicode.
This is created by a call to InitEvent(). If there is no hit in the given digicode,
the index is -1.

– Int t* fIndexLastHit: Same as previous lookup table, but has the index of
the last hit on the half ladder. Index is -2 if no hits on this digicode.

– TStnLinkBlock fSiStripLinkHit: Link block of indexes into the TSiStripBlock
which allows the user to have access to all strips used to create a given hit. See
the example in ana/TSiExample.cc for a use case.

• Member functions

– Int t InitEvent(): Puffs up lookup tables for this event. If you aren’t going
to use the lookup tables, don’t call this and it will save you some time.

– TStnSiHit* SiHit(int i): Access to the hit with index i in the array fSiHitList.

– Int t IndexFirstHit(): There are two forms of this function. One if you
want to get the index of the first hit given a barrel, ladder segment, phi wedge,
layer and side, and the other if you know the digicode already. This needs to
have InitEvent() called beforehand.

– Int t IndexLastHit(): Same as previous function, but returns the index of
the last hit on the half ladder.
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13.7 TStnSiIsect

This object contains some information about a track intersection with a particular silicon
half ladder. It can be useful for making residuals with silicon hits.

These objects are stored in the array in the TSiIsectBlock of Section 13.8. If you are
looping over tracks in the track block, then you can use the links in TStnTrackLinkBlock

(Section 13.11) to access these intersections.

• Data members

– TStnSiDigiCode fDigiCode: The digicode of the half ladder that this track
intersection is coming from.

– TVector3 fGlobal: Global coordinates (corrected for wafer-level alignment)
of track intersection with this half ladder.

– Float t fStripNumPhi: Intersection point in strip units on the axial side.

– Float t fStripNumZ: Intersection point in strip units on the stereo side.

– Float t fLocY and Float t fLocZ: Same as previoius local coordinates, but
in centimeters.

– TBitset fActiveRegion:

Bit If set, then passed thru active
0 phi area of axial side
1 z area of axial side
2 z area of stereo side
3 phi area of stereo side

13.8 TSiIsectBlock

This branch contains a collection of the intersections of tracks with silicon halfladders. If
you are looping over tracks, then you can use the correspondance object, TStnTrackLinkBlock
(see Section 13.11), to get access to all intersections for a given track. You also have im-
mediate access to all silicon hits for this track for comparison using that link block.

• Data members

– Int t fNSiIsects: Total number of track-silicon intersections in this event.

– TClonesArray* fSiIsectList: Array of TStnSiIsect’s.

• Member functions

– TStnSiIsect* SiIsect(int i): Access to the i-th intersection in the array
fSiIsectList.

13.9 TStnSiGeantIsect

Similar to the track intersection object, TStnSiIsect, this object contains information of
Monte Carlo particle intersections with silicon half ladders. It stores where the particle
went and how much energy it lost while traversing the half ladder.

This object is a pared down version of the CDF class PropagatedSiParticle.
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• Data members

– TStnSiDigiCode fDigiCode: The digicode of the half ladder that this Monte
Carlo particle traversed.

– Int t fUniqueID: Reuse this data member from TObject to store the index
into the TObspBlock of the particle that hit this ladder.

– TLorentzVector fEntryMomentum: 4-momentum of the particle at the point
of entrance to the half ladder.

– TLorentzVector fExitMomentum: 4-momentum upon exit.

– TVector3 fEntry and fExit: The entry and exit points in global coordinates.

– TBitset fActiveRegion:

Bit If set, then passed thru active
0 Entrance in Phi area of side 0
1 Entrance in Z area of side 0
2 Entrance in Z area of side 1
4 Entrance in Phi area of side 1
5 Exit in Phi area of side 0
6 Exit in Z area of side 0
7 Exit in Z area of side 1
8 Exit in Phi area of side 1

– Float t fDE: Total energy loss in GeV in this half-ladder.

– Float t fRadLen: Fraction of radiation length traversed.

– Float t fDistToNearPhi: Distance from (exit-entrance)/2 to center of near-
est strip. The Hall Effect should be visible in charge deposition models that
include it.

– Float t fDistToNearZ: Same as previous, but for strips on stereo side.

– Int t fInitPhi: Initial hit phi strip.

– Int t fFinalPhi: Final hit phi strip.

– Int t fInitZ and fFinalZ: Same as previous, but stereo side.

13.10 TSiGeantIsectBlock

This branch contains all the intersections of Monte Carlo particles (TStnSiGeantIsect
of Section 13.9) with the silicon detector elements. It also has a link block to allow the
user to have access to the particle in the TObspBlock that made the itersection.

• Data members

– Int t fNSiGeantIsect: Total number of TStnSiGeantIsect’s in this event.

– TClonesArray* fSiGeantIsectList: Array of intersections.

– TStnLinkBlock fIsectLinkObsp: Link block from OBSP index to the number
of intersections that it made. This is useful if you are looping over particles in
the TObspBlock and you want access to the intersections in fSiGeantIsectList.
This link block is puffed by a call to TSiGeantIsectBlock::InitEvent().
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• Member functions:

– Int t InitEvent(): Puffs the link block fIsectLinkObsp for this event.

– TStnSiGeantIsect* SiGeantIsect(int i): Access to the i-th intersection.

13.11 TStnTrackLinkBlock

This is a link block which stores the correspondence between tracks and their silicon
hits and intersections with the silicon detector. This branch is especially useful if you
are looping over tracks in the track block, TStnTrackBlock, and you want access to the
above information.

• Data members

– TStnLinkBlock fSiHitLinkTrk: Links from tracks to silicon hits in the TSvxDataBlock
(see Section 13.6).

– TStnLinkBlock fSiIsectLinkTrk: Links from tracks to the track intersec-
tions in the TSiIsectBlock (see Section 13.8).
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